Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. optom. (Internet) ; 17(1)Jan.-March. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-229117

RESUMO

Introduction A periodical self-monitoring of spherical refraction using smartphones may potentially allow a quicker intervention by eye care professionals to reduce myopia progression. Unfortunately, at low levels of myopia, the far point (FP) can be located far away from the eye which can make interactions with the device difficult. To partially remedy this issue, a novel method is proposed and tested wherein the longitudinal chromatic aberration (LCA) of blue light is leveraged to optically bring the FP closer to the eye. Methods Firstly, LCA was obtained by measuring spherical refraction subjectively using blue pixels in stimuli shown on organic light-emitting diode (OLED) screens and also grey stimuli with matching luminance. Secondly, the visual acuity (VA) measured with a smartphone located at 1.0 m and 1.5 m and displaying blue optotypes was compared with that obtained clinically standard measurements. Finally, the spherical over refraction obtained in blue light with a smartphone was compared with clinical over-refraction with black and white (B&W) optotypes placed at 6 m. Results Mean LCA of blue OLED smartphone screens was −0.67 ± 0.11 D. No significant differences (p > 0.05) were found between the VA measured with blue optotypes on a smartphone screen and an eye chart. Mean difference between spherical over-refraction measured subjectively by experienced subjects with smartphones and the one obtained clinically was 0.08 ± 0.34 D. Conclusions Smartphones using blue light can be used as a tool to detect changes in visual acuity and spherical refraction and facilitate monitoring of myopia progression. (AU)


Assuntos
Acuidade Visual , Refratometria/instrumentação , Smartphone , Refração Ocular , Grades , Fotofobia , Testes de Percepção de Cores
2.
J Optom ; 17(1): 100494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37939574

RESUMO

INTRODUCTION: A periodical self-monitoring of spherical refraction using smartphones may potentially allow a quicker intervention by eye care professionals to reduce myopia progression. Unfortunately, at low levels of myopia, the far point (FP) can be located far away from the eye which can make interactions with the device difficult. To partially remedy this issue, a novel method is proposed and tested wherein the longitudinal chromatic aberration (LCA) of blue light is leveraged to optically bring the FP closer to the eye. METHODS: Firstly, LCA was obtained by measuring spherical refraction subjectively using blue pixels in stimuli shown on organic light-emitting diode (OLED) screens and also grey stimuli with matching luminance. Secondly, the visual acuity (VA) measured with a smartphone located at 1.0 m and 1.5 m and displaying blue optotypes was compared with that obtained clinically standard measurements. Finally, the spherical over refraction obtained in blue light with a smartphone was compared with clinical over-refraction with black and white (B&W) optotypes placed at 6 m. RESULTS: Mean LCA of blue OLED smartphone screens was -0.67 ± 0.11 D. No significant differences (p > 0.05) were found between the VA measured with blue optotypes on a smartphone screen and an eye chart. Mean difference between spherical over-refraction measured subjectively by experienced subjects with smartphones and the one obtained clinically was 0.08 ± 0.34 D. CONCLUSIONS: Smartphones using blue light can be used as a tool to detect changes in visual acuity and spherical refraction and facilitate monitoring of myopia progression.


Assuntos
Miopia , Smartphone , Humanos , Refração Ocular , Acuidade Visual , Miopia/diagnóstico
3.
J. optom. (Internet) ; 16(3): 206-213, July - September 2023. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-222229

RESUMO

Purpose Personal mobile devices such as smartphones are proving their usefulness in ever more applications in tele-eyecare. An inconvenience and potential source of error in these past approaches stemmed from the requirement for the subjects to situate their devices at a distance. The present study aims to clinically validate best corrected visual acuity (BCVA) measures carried out by a novel smartphone application “vision.app” (VisionApp Solutions S.L.) using comparative statistics against clinical measurements. Materials and methods BCVA was measured in both eyes of 40 subjects using vision.app which displayed a black Landolt-C optotype with crowding on a white background, and utilized a 4 forced-choice procedure for the subjects to find (by means of swiping in either of four directions) the smallest optotype size they could resolve. Results were compared to BCVA measurements taken using a standard Snellen chart placed at 20 feet (6 m). Results The t-test revealed no significant differences between the app- and clinically-measured VA (p = 0.478 (OD) and 0.608 (OS)), with a mean difference between clinical and app measurements of less than one line of the eye chart (-0.009 logMAR (OD) and -0.005 logMAR (OS)). A limit of agreement for a 95% confidence interval of ± 0.08 logMAR for OD and OS was found. Conclusions The results show the potential use of a smartphone to measure BCVA at a handheld distance. The newly validated study results can hold major future advancements in tele-eyecare and provide eye care professionals with a reliable and accessible method to measure BCVA. (AU)


Assuntos
Humanos , Acuidade Visual , Aplicativos Móveis
4.
J Optom ; 16(3): 206-213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36964070

RESUMO

PURPOSE: Personal mobile devices such as smartphones are proving their usefulness in ever more applications in tele-eyecare. An inconvenience and potential source of error in these past approaches stemmed from the requirement for the subjects to situate their devices at a distance. The present study aims to clinically validate best corrected visual acuity (BCVA) measures carried out by a novel smartphone application "vision.app" (VisionApp Solutions S.L.) using comparative statistics against clinical measurements. MATERIALS AND METHODS: BCVA was measured in both eyes of 40 subjects using vision.app which displayed a black Landolt-C optotype with crowding on a white background, and utilized a 4 forced-choice procedure for the subjects to find (by means of swiping in either of four directions) the smallest optotype size they could resolve. Results were compared to BCVA measurements taken using a standard Snellen chart placed at 20 feet (6 m). RESULTS: The t-test revealed no significant differences between the app- and clinically-measured VA (p = 0.478 (OD) and 0.608 (OS)), with a mean difference between clinical and app measurements of less than one line of the eye chart (-0.009 logMAR (OD) and -0.005 logMAR (OS)). A limit of agreement for a 95% confidence interval of ± 0.08 logMAR for OD and OS was found. CONCLUSIONS: The results show the potential use of a smartphone to measure BCVA at a handheld distance. The newly validated study results can hold major future advancements in tele-eyecare and provide eye care professionals with a reliable and accessible method to measure BCVA.


Assuntos
Aplicativos Móveis , Humanos , Smartphone , Acuidade Visual , Testes Visuais/métodos
5.
J Pers Med ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669565

RESUMO

Sepsis is a severe dysregulated immune response to infection. Sepsis deaths represent 9% of cancer deaths in the U.S. Evidence of the effect of specific cancer sites on sepsis mortality risk remains limited, and no research has evaluated the effect of cancer treatment on the risk of sepsis death. We examined whether cancer sites and treatments differentially affect the risk of sepsis death compared to other-cause mortality, among the 94,784 Hawaii participants in the Multiethnic Cohort, including 29,255 cancer cases, using competing risk Cox proportional hazards regression. Cancer diagnosis at any site was associated with similar increases in sepsis and non-sepsis mortality risk (HR: 3.39 and 3.51, resp.). Colorectal cancer differentially affected the risk of sepsis and non-sepsis mortality with a 40% higher effect on the risk of sepsis death compared with non-sepsis mortality (RRR: 1.40; 95% CI: 1.14-1.72). Lung cancer was associated with a significantly lower increase in sepsis compared to non-sepsis mortality (HR: 1.22 and 3.0, resp.; RRR: 0.39). Radiation therapy had no effect on sepsis mortality but was associated with higher risk of non-sepsis mortality (HR: 0.90 and 1.16, resp.; RRR: 0.76), whereas chemotherapy was associated with higher risk of both sepsis and non-sepsis mortality (HR: 1.31 and 1.21, resp.). We conclude that the risk of sepsis-related mortality is differentially affected by cancer sites and treatments. These associations were consistent across sexes and ethnic groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...